DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2025 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

TT: Fachverband Tiefe Temperaturen

TT 51: Topological Superconductors

TT 51.3: Talk

Thursday, March 20, 2025, 17:15–17:30, H32

Localized Edge States in Antiferromagnet-Superconductor Hybrid Structures — •Ignacio Sardinero1,2, Yuriko Baba1,2, Rubén Seoane-Souto3, and Pablo Burset1,2,41Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain — 2Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain — 3Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain — 4Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Topological superconductors (TSCs) are promising building blocks for robust and reliable quantum information processing [1]. Most approaches to implement TSCs focus on materials with intrinsic spin-orbit coupling (SOC). However, a recent alternative strategy relies on synthetically engineering spin orbit using spatially varying magnetic fields [2]. Such proximitized structures need to be carefully designed so that the magnetic and superconducting orders coexist, avoiding stray fields detrimental for superconductivity. Here, we circumvent this challenge by investigating the role of antiferromagnetic (AF) textures in proximity to 2-dimensional superconducting surfaces. Our results reveal that the interplay between AF order and the SC coherence length impacts the density of states at the Fermi level. We show that lattice symmetry plays a crucial role for emerging topological phases, with higher-order phases arising when interlayer SOC is considered.

[1] S. Das Sarma et al., npj Quantum Inf. 1, 15001 (2015);

[2] I. Sardinero, R. Seoane-Souto, P. Burset, PRB 110, L060505 (2024).

Keywords: Superconductor; Antiferromagnet; Topological superconductivity; Andreev bound states

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2025 > Regensburg