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MM 18.1 Wed 10:15 H23
Relation Between Element Specific Chemistry and Basis Set
Size of Machine Learned Interatomic Potentials — ∙Haitham
Gaafer, Jan Janssen, and Joerg Neugebauer — Max Planck In-
stitute for Sustainable Materials, Düsseldorf, Germany
Machine learned interatomic potentials (MLIP) have gained popular-
ity in materials science for their scalability and accuracy on par with
the Density Functional Theory (DFT) training data. Based on the
linear scaling with the number of neighbors, the primary focus in the
recent years was increasing the flexibility of MLIPs to further improve
their accuracy, as demonstrated by approaches such as Neural Net-
work potentials and the Atomic Cluster Expansion (ACE). The Bessel
functions and Chebyshev polynomials gained popularity as basis sets
to represent the atomic bonds and orbitals. Nonetheless, the connec-
tion between an MLIP’s basis set and its capability to represent the
chemical complexity of various elements is not yet well understood.

In this study, we use ACE, as implemented in the Pacemaker soft-
ware package, to investigate three non-magnetic transition metals (i.e.,
Al, Au, and Cu). For each element, we parameterize computationally
efficient ACE potentials based on a minimal basis set to achieve a
given root-mean-square error (RMSE) across both training and test-
ing datasets. We find that the complexity of the MLIP primarily de-
pends on the scaling of the per-atom energy distribution rather than
the chemical complexity of the elements. Consequently, it is primarily
a numerical effect rather than a chemical effect.

MM 18.2 Wed 10:30 H23
Physics-Based Generative Models: Enhanced Structure-
Property Sampling in Inverse Materials Design — ∙Patricia
König1, Nicolas Bergmann1, Piero Coronica2, Chiara
Panosetti1, Hanna Türk1, Karsten Reuter1, and Christoph
Scheurer1 — 1Fritz-Haber-Institut der MPG, Berlin — 2Max Planck
Computational and Data Facility, Munich
Data-driven approaches for the inverse design of novel materials with
desired properties have become a key tool in materials discovery. Here,
we introduce a framework using physics-based Generative Adversarial
Networks for enhanced structure-property sampling via latent space
design.

We are interested in sampling structures of two chemical systems
associated with different relevant physical quantities, like the work
function in the electrochemical adsorption of iodide and hydroxide on
copper surfaces, and the oxygen chemical potential in the CO to CO2

conversion over an amorphous RuO2 catalyst. As part of our frame-
work, we track and evaluate the structural diversity and convergence of
our generator with machine-learning interatomic potentials and quan-
titative metrics. This enables a high throughput and cost-effective
evaluation of structural guesses and their related properties to lever-
age the full potential of generative models. Concluding, we are showing
on two model systems how to explore a vast chemical space of datasets
with sparse areas, particularly structures with high free energies in
transition states and diverse amorphous surface structures, thereby
advancing the understanding and design of novel materials.

MM 18.3 Wed 10:45 H23
Active learning-based automated construction of Hamilto-
nian for structural phase transitions: a case study on BaTiO3

— ∙Mian Dai1, Yixuan Zhang1, Nuno Fortunato1, Peng Chen2,
and Hongbin Zhang1 — 1Institute of Materials Science, Technical
University of Darmstadt, Darmstadt 64287, Germany — 2Physics De-
partment and Institute for Nanoscience and Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, USA
The effective Hamiltonians have been widely applied to simulate the
phase transitions in polarizable materials, with coefficients obtained by
fitting to accurate first-principles calculations. However, it is tedious
to generate distorted structures with symmetry constraints, in partic-
ular when high-ordered terms are considered. In this work, we im-
plement and apply a Bayesian optimization-based approach to sample
the potential energy surface, automating the Hamiltonian construction
by selecting distorted structures via active learning. Taking BaTiO3

(BTO) as an example, we demonstrate that the Hamiltonian can be
obtained using fewer than 30 distorted structures. Follow-up Monte
Carlo simulations can reproduce the structural phase transition tem-

peratures of BTO, comparable to experimental values with an error <
10%. Our approach can be straightforwardly applied on other polariz-
able materials and paves the way for quantitative atomistic modelling
of diffusionless phase transitions.

MM 18.4 Wed 11:00 H23
Comparing linear and deep learning surrogate models of ma-
terials electronic structure — ∙Valdas Vitartas, Chen Qian,
James Kermode, and Reinhard Maurer — University of Warwick,
Coventry, UK
The self-consistent electronic Hamiltonian matrix from Density Func-
tional Theory (DFT) gives access to the electronic band structure and
the density of states of a material, albeit at a large computational
cost. Over recent years, several surrogate models based on linear
parametrization and deep learning have been proposed to efficiently
learn the electronic Hamiltonian as a function of the configuration and
composition of materials. In this work, we compare two such mod-
els, the ACEhamiltonians [npj Comput. Mater. 8, 158] and MACE-H.
Both provide a representation of the Hamiltonian in atomic orbital ba-
sis in terms of an equivariant many-body expansion of local atomic en-
vironments. In the case of ACEhamiltonians, the model parametriza-
tion is linear; for MACE-H, the representation serves as input to a
message-passing neural network. The models are trained on reduced,
valence-only Hamiltonian matrices for bulk gold and silicon generated
from all-electron DFT via an approximately eigenspectrum-conserving
transformation. We discuss the inherent strengths and weaknesses of
the models by illustrating their accuracy, performance, data efficiency,
and their ability to predict electronic quantities of interest for out-of-
distribution configurations.

MM 18.5 Wed 11:15 H23
MACE-H: Equivariant Hamiltonian prediction with many-
body expansion message passing — ∙Chen Qian, Valdas Vi-
tartas, James Kermode, and Reinhard J. Maurer — University
of Warwick, UK
The machine learning prediction of Kohn-Sham Density Functional
Theory (DFT) Hamiltonians has the potential to accelerate the pre-
diction of electronic properties, such as electronic band structures and
electron-phonon coupling, while avoiding computationally expensive
self-consistent field iterations. We introduce the MACE-H graph neu-
ral network, which combines the MACE body-order expansion message
passing scheme with node-degree expansion blocks to efficiently gener-
ate messages that incorporate all relevant SO(3) irreducible represen-
tations. This model achieves high accuracy and high computational
efficiency in capturing the local chemical environment. We demon-
strate the model performance using several open materials benchmark
datasets for 2D materials, achieving sub-meV prediction errors on
matrix elements. Moreover, we discuss how the many-body expan-
sion achieves higher data efficiency and examine its effect on out-of-
distribution prediction for nanostructures featuring long-range interac-
tions. To assess prediction outputs, we analyze the correlation between
errors and hermiticity. The high computational efficiency and accuracy
make the model a good candidate for electronic structure prediction
in large-scale systems and high-throughput material screening.

15 min. break

MM 18.6 Wed 11:45 H23
Inferring Structure-Property Relationships with Artificial In-
telligence: A Lignin Case Study — ∙Matthias Stosiek and
Patrick Rinke — Technical University Munich, Munich, Germany
The potential of lignin as an abundant, underutilized biopolymer is in-
creasingly being realized. A key challenge for the targeted production
of lignins remains the poorly understood relation between lignin prop-
erties and its complex structure. Artificial intelligence (AI) methods
could reveal such structure-function relationships but remain elusive
in biomaterials research.

Structurally diverse lignins are extracted from birch wood combining
the Aqua Solv Omni (AqSO) biorefinery process and AI-guided data
acquisition[1]. Each lignin sample is characterized with 2D nuclear
magnetic resonance (NMR) spectroscopy. A total of 95 collected NMR
spectra are complemented with measurements of key lignin properties
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such as the antioxidant activity.
To establish structure-function relationships, we first correlate re-

gions of the NMR spectra with the corresponding property measure-
ments. Subsequently, we use RFR feature importance analysis to iden-
tify structural features that correlate with each property and provide
a chemical interpretation of our findings. For instance, we find that a
higher number of 𝛽-O-4 bonds leads to a lower surface tension in wa-
ter indicating a more linear lignin structure. Our structure-inference
approach is designed to be general and applicable to a wide range of
materials and characterization data.

[1] D. Diment et al., ChemSusChem 2024, e202401711.

MM 18.7 Wed 12:00 H23
Machine learning electrostatics: Open challenges from bat-
teries to proteins — ∙Max Veit — Technische Universität Darm-
stadt, DE
Long-range interactions such as electrostatics have long been a con-
cern in developing accurate, efficient machine learning potential energy
surfaces (ML-PES). Such potentials have now become established as a
powerful technique allowing simulations of complex structures and pro-
cesses with unprecedented realism and accuracy. However, the most
widespread and successful methods to date do not incorporate any in-
teractions beyond a fixed cutoff range, typically a few coordination
shells. First, we need to ask the question of how methods with such an
obvious limitation can be so successful, even applied to systems where
long-range electrostatic interactions are known to be relevant. Second,
we need to ask what approach, among the many proposed over the
last decade or so, is the most appropriate if we want to incorporate
long-range interactions in an accurate, efficient, and physically appro-
priate way. We investigate these questions in the context of a tech-
nologically relevant, experimentally accessible test system: lithium-
intercalated graphite or nearly-graphitic nanoporous carbon. We first
discuss the characteristics of this system that make it uniquely suited
to machine learning simulation, then turn to the difficulties involved
in defining what exactly makes a “good” electrostatic model, or long-
range model in general, in the context of machine learning potentials,
and finally discuss the implications for other systems – such as complex
biomolecules – just out of the current reach of ML-PES simulations.

MM 18.8 Wed 12:15 H23
Data driven prediction of relative stability of binary and
ternary TCP phases. — ∙Mariano Forti, Ralf Drautz, and
Thomas Hammerschmidt — Interdisciplinary centre for advanced
materials simulation, Ruhr-University Bochum
The study of precipitation of topological close packed(TCP) phases is
of primary importance for the performance of superalloys. However,
the structural complexity of these intermetallic compounds and the
chemical complexity of the superalloys with typically up to ten ele-
ments hampers the exhaustive sampling of chemical space by density-
functional theory (DFT) calculations. We overcome the related com-
putational limitations by combining machine learning (ML) techniques
with descriptors of the local atomic environment of the TCP phases
and the use of interatomic potentials to predict phase properties with
high precision. We illustrate our methodology studying the relative
stability of the complex phases R, P, M and 𝛿 in binary and ternary
systems produced from the main components in Co, Ni and Fe based
superalloys.

MM 18.9 Wed 12:30 H23
Inverse Materials Design with Large Language Models —
∙Jan Janssen and Joerg Neugebauer — MPI for Sustainable Ma-
terials, Düsseldorf, Germany
Large language models (LLM) are trained on a vast amount of scientific
literature to learn the included semantic, conceptional, and statistical
relationships. The LLM applies these relationships to generate re-
sponses in natural language based on the context of the conversation.
This raises the question: Can a LLM replace a scientist? Or how does
the thought process of a scientist differ from the statistical approach
of the LLM? Can the LLM make us better scientists?

We benchmark the capabilities of current LLMs to design new mate-
rials using atomistic simulations. While the required Python program-
ming is challenging for the LLM and suffers from hallucination, this
can be addressed with an agent-based approach by providing the LLM
with a series of simulation workflows for the pyiron workflow frame-
work. With these simulation workflows the LLM is not only capable to
calculate material properties but can also invert the process and lever-
age statistical models to identify alloying compositions which match a
pre-defined materials property, enabling inverse materials design.

Our benchmarks highlight the importance of developing scientific
workflows. The more a workflow reduces the technical and scien-
tific complexity of studying a given materials property the easier
it is to use for LLMs and scientists alike. In this way LLMs also
help us as scientists to validate and improve our scientific workflows.
https://github.com/jan-janssen/LangSim

MM 18.10 Wed 12:45 H23
Workflow Utilities within the NOMAD Infrastructure: Low-
ering the Barrier to FAIR Data Management for Computa-
tional Materials Science — ∙J.F. Rudzinski1, E. Boydas1, N.
Daelman1, B. Mohr1, J.M. Pizarro1, T. Bereau2, C. Draxl1,
L.M. Ghiringhelli3, M. Girard4, D. Usvyat5, R. Valenti6, and
S. Botti7 — 1CSMB, HU Berlin — 2ITP, Heidelberg Uni. — 3Dept.
of Mater. Sci. and Eng., FAU Erlangen — 4Max Planck Inst. for
Poly. Res., Mainz — 5Inst. für Chem., HU Berlin — 6Inst. für Theor.
Phys., GU Frankfurt/M — 7RC-FEMS, Ruhr Uni. Bochum
NOMAD [nomad-lab.eu] [1] is an open-source, community-driven data
infrastructure, focusing on materials science data. The NOMAD soft-
ware can automatically extract data from the output of over 60 simula-
tion codes, has been extensively expanded to support advanced many-
body calculations and classical molecular dynamics simulations, and
allows straightforward specialization via a rapidly developing plugin-
based ecosystem. Both standardized and custom complex simulation
workflows not only streamline data provenance and analysis but also
facilitate the curation of AI-ready datasets. This contribution will fo-
cus on recently developed workflow functionalities and utilities within
the NOMAD infrastructure. These advances enable highthroughput
interfacing with the NOMAD repository, opening improved discovery
pipelines by leveraging the benefits of NOMAD’s comprehensive and
FAIR-compliant data management system [2].
[1] Scheidgen, M. et al., JOSS 8, 5388 (2023).
[2] Scheffler, M. et al., Nature 604, 635-642 (2022).

MM 18.11 Wed 13:00 H23
Freedom of design: towards in silico design of molecules
with desired quantum-mechanical properties — ∙Leonardo
Medrano Sandonas1, Alessio Fallani2, Julian Cremer3,
Alexandre Tkatchenko2, and Gianaurelio Cuniberti1 — 1TUD
Dresden University of Technology, Germany. — 2University of Lux-
embourg, Luxembourg. — 3Pfizer Worldwide R&D, Germany.
The rational in silico design of chemical compounds requires a deep
understanding of both the structure-property and property-property
relationships that exist across chemical compound space (CCS), as well
as efficient methodologies for defining an inverse property-to-structure
mapping. In this presentation, we will discuss these relationships in the
CCS sector spanned by small [Sci. Data 8, 43 (2021)] and large [Sci.
Data 11, 742 (2024)] drug-like molecules, highlighting the existence
of the ”Freedom of design” principle [Chem. Sci. 14, 10702 (2023)].
The insights gained are subsequently leveraged to design molecules
with desired properties. To this end, we first developed a variational
autoencoder (VAE) approach and demonstrated that CCS can be pa-
rameterized using a finite set of quantum-mechanical (QM) properties
[Nat. Commun. 15, 6061 (2024)]. We showcased the capabilities of
this method by conditionally generating de novo molecular structures,
interpolating transition paths for chemical reactions, and providing in-
sightful insights into property-structure relationships. We expect our
work will contribute to the development of advanced generative frame-
works that enhance the in silico design and identification of molecules
for specific chemical processes.
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