
Regensburg 2025 – MM Monday

MM 3: Data-driven Materials Science: Big Data and Worksflows
Machine Learning, Potential Development

Time: Monday 10:15–13:00 Location: H10

MM 3.1 Mon 10:15 H10
Benchmarking DFT Functionals at Finite Temperature with
ASSYST and MLIPs — ∙Marvin Poul and Jörg Neugebauer
— Max-Planck-Institut für Nachhaltige Materialien
A key ingredient to the accuracy of Density Functional Theory (DFT)
calculations is the chosen approximation to the exchange-correlation
functional. Local Density Approximation (LDA) and Generalized Gra-
dient Approximation (GGA) calculations often bracket experimental
observations, but systematic exploration of the behavior of different
density functionals is hindered by the high computational cost of
DFT in realistic applications, especially concerning finite temperature
properties. Using the ASSYST[1] method, we automatically gener-
ate unary, general purpose Atomic Cluster Expansion (ACE) Machine
Learning Interatomic Potentials (MLIPs) for a range of metals using
LDA, PBE and r2SCAN functionals. The key advantage of ASSYST
lies in the small cells (≤ 10 atoms per cell) that it generates as training
data. This allows us to relabel the data using different functionals very
efficiently. We then use these potentials to calculate melting curves,
thermal expansion, and formation energies of various defects (grain
boundaries, surfaces, point defects) to systematically assess strengths
and weaknesses of the DFT functionals. In general, we find good
agreement with corresponding DFT results, showing that ASSYST
can reliably create transferable potentials for metals at DFT accuracy.

[1]: https://www.researchsquare.com/article/rs-4732459/v1

MM 3.2 Mon 10:30 H10
Assessing the role of physical constraints in machine learning
potentials — ∙Marcel F. Langer, Sergey N. Pozdnyakov, Fil-
ippo Bigi, and Michele Ceriotti — Laboratory of Computational
Science and Modeling (COSMO) and National Centre for Computa-
tional Design and Discovery of Novel Materials (MARVEL), Institute
of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lau-
sanne, Switzerland
Machine learning potentials, which approximate the potential energy
surface of atomistic systems to enable larger and longer simulations
than first-principles methods, have advanced rapidly in recent decades.
Much of this development has been driven by the increasingly sophis-
ticated treatment of physical symmetries, in particular invariances, in
the underlying machine learning models. However, the rise of so-called
unconstrained models, which replace exact invariance with learned ap-
proximations, has sparked debate over this approach. Some models
even choose to directly predict forces, rendering the resulting force
fields non-conservative. We investigate the effectiveness of such mod-
els and evaluate the impact of disregarding physical constraints for
practical simulations. In particular, we study the effects of breaking
rotational symmetry in a machine-learning potential for water [1] and
discuss the potential consequences of direct force predictions.

[1]: M.F. Langer, S.N. Pozdnyakov, and M. Ceriotti, Mach. Learn.:
Sci. Technol. 5 04LT01 (2024)

MM 3.3 Mon 10:45 H10
Fast and flexible range-separated models for atomistic ma-
chine learning — ∙Philip Loche, Marcel F. Langer, and
Michele Ceriotti — Laboratory of Computational Science and Mod-
eling (COSMO), Institute of Materials, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
Most machine learning (ML) interatomic potentials rely on a locality
ansatz, decomposing energy into short-ranged, atom-centered contri-
butions. This limits their ability to describe problems dominated by
long-range physical effects, such as electrostatics. We present a frame-
work integrating established algorithms for non-bonded interactions
– including Ewald summation, PME, and P3M – into atomistic ML.
Reference implementations are provided in PyTorch and JAX. Beyond
Coulomb potentials, we introduce Exterior Potential Features for gen-
eral long-range ML applications. Our modular libraries enable ac-
curate physical force evaluations, seamless integration with local ML
schemes via automatic differentiation, and flexible architectures for
advanced models. We benchmark these tools for molecular dynamics,
range-separated ML potentials, and long-range atomic descriptors.

MM 3.4 Mon 11:00 H10
Beyond Numerical Hessians: Applications for Higher Or-
der Derivatives in Machine Learning Interatomic Potentials
— ∙Nils Gönnheimer1,2, Karsten Reuter1, and Johannes T.
Margraf2 — 1University of Bayreuth — 2Fritz-Haber-Institut der
MPG, Berlin
The development of machine learning interatomic potentials (MLIPs)
has revolutionized computational chemistry by enhancing the accuracy
of empirical force fields while retaining a large computational speed-up
compared to first-principles calculations. Despite these advancements,
calculating Hessian matrices remains challenging due to the lack of
analytical second-order derivatives, necessitating the use of computa-
tionally expensive finite difference methods (which can lead to numeri-
cal instabilities because of rounding errors). Automatic differentiation
(AD) offers a promising approach to reducing this computational ef-
fort and making the calculation of Hessian matrices more efficient and
accurate. In this contribution, we discuss the implementation of AD
Hessians in the equivariant MACE framework. This new methodol-
ogy finds applications in screening the heat capacities of metal-organic
frameworks (MOFs) and in the calculation of infrared (IR) spectra,
which are an ubiquitous tool for molecular characterization.

MM 3.5 Mon 11:15 H10
Diversity-Driven Active Learning of Interatomic Potentials
for Reaction Network Exploration — ∙Francesco Cannizzaro,
King Chun Lai, Patricia Poths, Sebastian Matera, Vanessa
J. Bukas, and Karsten Reuter — Fritz-Haber-Institut der MPG,
Berlin
We present an automatic workflow for the simultaneous active learning
of Machine-Learning Interatomic Potentials (MLIPs) and exploration
of complex networks of activated events. This workflow consists of
alternating periods of training and the generation of candidate struc-
tures for the enrichment of the training set using the recently devel-
oped Automatic Process Explorer (APE) [1]. This allows us to de-
termine elementary processes and corresponding barriers without the
need of human supervision. From the output of the APE explorations,
we identify maximally diverse atomic structures utilizing the DECAF
fuzzy classification algorithm [2] and add only these to the training
set. We exemplify this strategy on carbon intercalation in Pd, us-
ing GAP and MACE as MLIP frameworks. We find that this diversity
driven approach outperforms state-of-the-art training set designs based
on molecular dynamics for finding activated events and corresponding
barriers. Particularly, our workflow performs very well in reducing
outliers, which is of utmost importance for activated event dynamics
since this is often controlled by only a few barriers.

[1] Lai et al., ChemRxiv, https://doi.org/10.26434/chemrxiv-2024-
jbzr7 (2024).

[2] Lai et al., J. Chem. Phys. 159, 024129 (2023).

15 min. break

MM 3.6 Mon 11:45 H10
Accelerating Materials Exploration with Active Machine
Learning: Integrating SISSO with FHI-aims — Yi Yao1,2,
Lucas Foppa1, Akhil Sugathan Nair1, Andrei Sobolev1,2,
∙Konstantin Lion1,2, Sebastian Kokott1,2, and Matthias
Scheffler1 — 1NOMAD Laboratory at the Fritz Haber Institute of
the Max Planck Society, Berlin, Germany — 2Molecular Simulations
from First Principles e.V., Berlin, Germany
We present a user-friendly web application for active learning-based
materials exploration with the goal of broadening the usability of AI
tools. The platform integrates the SISSO (Sure Independence Screen-
ing and Sparsifying Operator) method [J. Chem. Phys. 159, 114110
(2023)] with FHI-aims software [Comp. Phys. Commun. 180, 2105
(2009)] to provide interpretable modeling and reliable property predic-
tions. SISSO dynamically updates models during the exploration pro-
cess, while FHI-aims ensures accurate all-electron density functional
theory (DFT)-based calculations. The property prediction workflow is
managed using the atomate2 library, providing many ”standard” DFT
workflows and efficient utilization of compute resources ranging from

1
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local machines to cloud infrastructures. By leveraging SISSO-based
uncertainty prediction, the application implements active learning to
efficiently identify materials with desirable target properties. Two case
studies, the exploration of the bulk modulus in perovskites and the
prediction of stable oxides under harsh conditions, demonstrate the
platform’s ability to accelerate materials discovery.

MM 3.7 Mon 12:00 H10
Data-driven design of mechanically hard soft magnetic high-
entropy alloys — ∙Mian Dai1, Yixuan Zhang1, Xiaoqing Li2,
Stephan Schönecker2, Liuliu Han3, Ruiwen Xie1, Chen Shen1,
and Hongbin Zhang1 — 1Institute of Materials Science, Technical
University of Darmstadt, Darmstadt, Germnay — 2Department of
Materials Science and Engineering, KTH - Royal Institute of Tech-
nology, Stockholm, Sweden — 3Max Planck Institute for Sustainable
Materials, Düsseldorf, Germany
The rational design of mechanically hard soft magnets, combining high
hardness with magnetically soft properties, represents a critical fron-
tier in materials science. Here, we introduce a comprehensive data-
driven framework to navigate the vast compositional space of high-
entropy alloys (HEAs) and identify candidates optimized for these
dual functionalities. Utilizing a curated dataset of 1,842,628 density
functional theory calculations, encompassing 45,886 quaternary and
414,771 quinary equimolar HEAs derived from 42 elements, we em-
ploy ensemble learning to synergistically integrate multiple predictive
models. This methodology captures the relationships between com-
position, crystal structure, mechanical performance, and magnetic be-
havior, enabling the identification of alloys with a unique combination
of high hardness and magnetic softness. Our framework establishes a
robust pathway for the accelerated discovery of next-generation hard-
soft magnetic materials, underscoring the transformative potential of
data-driven strategies in materials design.

MM 3.8 Mon 12:15 H10
Autonomous optimization of coin-cell batteries and thin-
film growth — ∙Edan Bainglass1,6, Peter Kraus2,5, Fran-
cisco Ramirez3,6, Enea Svaluto-Ferro2, Loris Ercole3,6, Ben-
jamin Kunz2, Sebastiaan Huber3,6, Nukorn Plainpan2, Nikita
Shepelin1, Nicola Marzari1,3,6, Corsin Battaglia2,3,4, and Gio-
vanni Pizzi1,3,6 — 1PSI, Villigen, Switzerland — 2Empa, Düben-
dorf, Switzerland — 3EPFL, Lausanne, Switzerland — 4ETH Zurich,
Zurich, Switzerland — 5TUB, Berlin, Germany — 6MARVEL,
Switzerland
Advancements in materials science are increasingly driven by the inte-
gration of automation of both experiments and simulations, machine
learning, and robust data management frameworks. In this talk, we
discuss the integration of experimental systems with the AiiDA [1]
workflow management system, both battery coin cell assembly and cy-
cling [2], and for thin film growth by pulsed laser deposition (PLD). We
discuss the ongoing integration of these platforms with the FINALES
[3] fast intention-agnostic learning server towards fully autonomous
optimization of battery end-of-life (EOL) performance. We also dis-
cuss preliminary results demonstrating the feasibility of autonomously

optimizing the layer-by-layer thin-film growth with PLD. These case
studies demonstrate the potential of automated workflows to accelerate
the discovery and optimization of functional materials.

[1] S. P. Huber et al., Sci. data 7, 300 (2020)
[2] P. Kraus et al., J. Mat. Chem. A 12, 10773 (2024)
[3] M. Vogler et al. Adv. Ener. Mat. 2403263 (2024)

MM 3.9 Mon 12:30 H10
Learning Disorder in Generative Materials Discovery - Bridg-
ing Prediction and Experiment — ∙Konstantin Jakob1, Aron
Walsh2, Karsten Reuter1, and Johannes T. Margraf1,3 —
1Fritz-Haber-Institut der MPG, Berlin, Germany — 2Imperial College
London, London, UK — 3University of Bayreuth, Bayreuth, Germany
In recent years, generative machine learning (ML) models have demon-
strated tremendous potential for the design and discovery of new ma-
terials. This has led to extensive predictions of previously unknown,
potentially stable inorganic materials. However, current models suffer
from the fact that the underlying training data is purely based on den-
sity functional-calculations for small, ideal crystals. As a consequence,
many of the supposedly new materials are in fact experimentally known
as disordered crystals. In this work, we address this issue by performing
a thorough analysis of crystal disorder in the experimental structures
of the Inorganic Crystal Structure Database (ICSD). Based on this,
we develop disorder classification models and representations that can
predict the likelihood of disorder across chemical space. Eventually,
these concepts will allow us to extend current generative models to
realistic crystal systems and bridge the gap between prediction and
experiment.

MM 3.10 Mon 12:45 H10
Materials-Discovery Workflows Guided by Symbolic Regres-
sion: Identifying Stable Oxides for Catalytic Applications —
∙Akhil S. Nair, Lucas Foppa, and Matthias Scheffler — The
NOMAD Laboratory at the FHI of the Max Planck Society, Berlin,
Germany
AI-driven workflows will accelerate materials discovery by efficiently
guiding experiments or simulations towards materials with desired
properties. However, probabilistic AI approaches commonly used in
these workflows are limited by the relatively small size of high-quality
datasets and they rely on typically unknown, low-dimensional rep-
resentations. Herein, we discuss the recent advancements in apply-
ing symbolic regression based on the sure-independence screening and
sparsifying operator (SISSO) approach within iterative frameworks for
materials discovery. This involves an ensemble approach for the un-
certainty quantification of SISSO models as well as the development
of optimization strategies to efficiently explore promising regions of
the materials space. These developments present an opportunity to
integrate SISSO into sequential-learning workflows for materials dis-
covery. Importantly, SISSO provides materials-property maps covering
the entire materials space, further reducing the risk that the workflow
misses promising materials that were overlooked in the initial dataset.
We demonstrate the effectiveness of the SISSO-guided workflows by
identifying stable oxides for catalytic applications.
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