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MM 31: Data-driven Materials Science: Big Data and Worksflows
Materials Properties and more

Time: Thursday 15:00–18:00 Location: H10

MM 31.1 Thu 15:00 H10
Thermodynamic stability of the materials in the Materials
Cloud three-dimensional crystals database (MC3D) — ∙Timo
Reents1,2, Marnik Bercx1, and Giovanni Pizzi1,2 — 1Laboratory
for Materials Simulations (LMS) and National Centre for Compu-
tational Design and Discovery of Novel Materials (MARVEL), Paul
Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland — 2École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
High-throughput studies based on ab initio methods such as Density
Functional Theory (DFT) enable the analysis of physical properties
across a broad chemical space. Here, we present the Materials Cloud
three-dimensional crystals database (MC3D), a DFT optimized and
curated structural database of experimentally known inorganic crys-
tals. All calculations are managed and driven by the AiiDA [1, 2]
workflow engine, allowing to browse the full provenance graph and to
share the results in the Materials Cloud [3]. We introduce the protocols
behind MC3D, the new frontend, and we then focus on the thermo-
dynamic stability. To improve the agreement between the theoretical
and experimental thermodynamic stability, we apply empirical [4] and
machine-learning [5] based corrections, and improve upon them, dis-
cussing the agreement with experimental data on stability.

[1] Huber, S.P. et al., Sci Data, 2020, 7, 300.
[2] Uhrin, M. et al., Comp. Mat. Sci., 2021, 187, 110086.
[3] Talirz, L. et al., Sci Data 7, 299 (2020).
[4] Stevanović, V. et al., Phys. Rev. B, 2012, 85, 115104.
[5] Gong, S. et al., JACS Au, 2022, 2, 1964-1977.

MM 31.2 Thu 15:15 H10
high-throughput computation and machine learning model-
ing of magnetic moments and Mössbauer spectroscopy for Fe-
based intermetallics — ∙Bo Zhao, Xiankang Tang, and Hong-
bin Zhang — Institute of Materials Science, Technische Universität
Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
Understanding the relationship between the local crystalline environ-
ment and magnetic properties is a fundamental challenge in condensed
matter physics and materials science. This study explores this rela-
tionship in Fe-based intermetallic compounds, focusing on the mag-
netic moments and Mössbauer parameters of iron atoms, including the
isomer shift, electric field gradient, and magnetic hyperfine field. High-
throughput calculations and machine learning techniques are employed
to predict magnetic properties based on local atomic structures, using
smooth overlap of atomic positions (SOAP) as local descriptors. The
results first reveal the sparsity of relevant materials in the Materials
Project database. Leveraging high-throughput, system-specific data,
the study demonstrates strong correlations between local atomic envi-
ronments and magnetic properties, achieved through machine learning
models. Furthermore, the limitations of symmetry-invariant descrip-
tors in predicting tensor-like properties, such as the electric field gra-
dient, are highlighted. By incorporating a graph-based equivariant
autoencoder, the model achieves improved predictions by effectively
capturing the symmetry of local environments.

MM 31.3 Thu 15:30 H10
Advanced Machine Learning of 17O NMR in Non-Magnetic
Oxides: High-Throughput Calculation, Prototype Com-
pound Analysis, and Transfer Learning — ∙Zhiyuan Li, Bo
Zhao, Hongbin Zhang, and Yixuan Zhang — Institute of Materi-
als Science, TU Darmstadt, 64287 Darmstadt Germany
The study of 17O NMR spectroscopy is crucial for understanding the
local structure of oxides, where the naturally occurring NMR-active
oxygen isotope, 17O, provides unique insights into local environments
due to its large chemical shift range and quadrupolar nature. In this
work, we present a high-throughput workflow integrating AiiDa and
CASTEP to calculate the NMR parameters of over 7100 compounds
from the Materials Pro ject database, followed by utilizing machine
learning models to predict 17O NMR parameters. Furthermore, taking
BaTiO3 as an example, we identify prototypical ABO3 crystal struc-
tures, construct BaTiO3 analogs via substitution, perform ab initio
molecular dynamics simulations to generate 3000 perturbated struc-
tures, and evaluate the NMR parameters. The results of our machine

learning modeling with such additional dataset reveal that incorporat-
ing perturbated structures enhances the accuracy of the machine learn-
ing model. Moreover, by leveraging transfer learning, using previously
trained model from our high-throughput dataset, the predictivity for
the newly generated BaTiO3 analogs can be further improved.

MM 31.4 Thu 15:45 H10
Advancing chemical shielding predictions in organic solids
— ∙Matthias Kellner and Michele Ceriotti — École Polytech-
nique Fédérale de Lausanne, 1015 Lausanne, Switzerland
In this presentation, we showcase our recent advancements in machine
learning for predicting chemical shieldings in organic solids. Leveraging
symmetry-adapted machine learning models, our updated infrastruc-
ture facilitates the accurate prediction of chemical shielding anisotropy
and enables structure optimization driven by chemical shielding gra-
dients. We will highlight how integrating machine learning potentials
with property prediction models provides unique insights into atom-
istic processes, offering a powerful framework for exploring the complex
behavior of organic materials.

MM 31.5 Thu 16:00 H10
Active learning workflow for mixed-halide perovskite stabil-
ity and electronic band-structure — ∙Tim Bechtel1,2, Santi-
ago Rigamonti1, and Claudia Draxl1,2 — 1Humboldt-Universität
zu Berlin, Germany — 2Max Planck Institute for Solid-State Research,
Stuttgart, Germany
Mixed-halide perovskites are promising materials for stable and ef-
ficient light harvesting and emission applications, and their compo-
sition can be tailored to match relevant regions of the light spec-
trum [1]. Theoretical predictions from first-principles calculations can
provide insight into stability, ground-state properties, and electronic
structure [2,3]. Comparison with experimental results for "real" ma-
terials is, however, challenging. For example, the consideration of
chemical (dis)order requires huge supercells, which is computation-
ally out of reach with state-of-the-art methodology. For the family
of CsPb(Cl𝑥Br𝑦I1−𝑥−𝑦)3 compounds, we bridge this gap with an ac-
tive learning workflow. It is based on a fine-tuned machine learning
interatomic potential [4] that interpolates between already seen com-
positions, and actively explores new composition ranges. This ap-
proach allows for data-efficient predictions of stability through finite-
temperature phase diagrams and optical properties for a wide range of
compositions.

[1] H. Näsström, PhD Thesis, https://doi.org/10.18452/24939
[2] F. Pan, et al.; https://doi.org/10.1021/acs.chemmater.4c00571
[3] J. Laakso, et al.; https://doi.org/10.1103/PhysRevMaterials.6.113801
[4] I. Batatia, et al.; https://doi.org/10.48550/arXiv.2401.00096

15 min. break

MM 31.6 Thu 16:30 H10
Towards Multi-Fidelity Machine Learning Using Robust Den-
sity Functional Tight Binding Models — ∙Mengnan Cui1,2,
Karsten Reuter1, and Johannes T. Margraf2 — 1Fritz-Haber-
Institut der MPG, Berlin, Germany — 2University of Bayreuth, Phys-
ical Chemistry V: Theory and Machine Learning
Machine learning has revolutionized the atomistic simulation of
molecules and materials, offering unparalleled computational speed
with high accuracy. However, its performance depends heavily on
the quality and quantity of training data, presenting challenges due
to the scarcity of high-fidelity datasets (beyond semilocal DFT). This
study investigates transfer learning (TL) across multiple fidelities for
molecules and solids, examining the role of fidelity levels and config-
uration/chemical space overlap in pre-training and fine-tuning. This
reveals negative transfer driven by noise from low-fidelity methods like
DFTB, which can significantly impact fine-tuned models. Despite this,
multi-fidelity approaches consistently outperform single-fidelity learn-
ing and, in some cases, even surpass TL based on foundation models by
leveraging an optimal overlap of pre-training and fine-tuning chemical
spaces.
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MM 31.7 Thu 16:45 H10
Enhancing FAIR Data Management with Automated Vi-
sualization of Calculations — ∙N. Daelman1, E. Boydas1,
B. Mohr1, J.M. Pizarro1, T. Bereau2, C. Draxl1, L.M.
Ghiringhelli3, M. Girard4, D. Usvyat5, R. Valenti6, S. Botti7,
and J.F. Rudzinski1 — 1CSMB, HU Berlin — 2ITP, Heidelberg Uni.
— 3Dept. of Mater. Sci. and Eng., FAU Erlangen — 4Max Planck
Inst. for Poly. Res., Mainz — 5Inst. für Chem., HU Berlin — 6Inst.
für Theor. Phys., GU Frankfurt/M — 7RC-FEMS, Ruhr Uni. Bochum
In contrast to data science packages, first-degree data post-processing
tends to lock people into silos built around a particular simulation soft-
ware. NOMAD [nomad-lab.eu][1] is an open-source and community-
driven data infrastructure that breaks open these silos by extracting
scientific data from over 60 code packages into a code-agnostic schema
within a research data management (RDM) ecosystem [2]. This talk
showcases NOMAD*s new visualization features at various levels of
RDM. At the level of individual calculations, NOMAD provides now
more detailed electronic structure visualizations and fast, dynamic ren-
dering of heavy files. Automated visualization does not imply, however,
a lack of customizability. NOMAD provides support for tailored figures
and larger-scale specialization via an accessible plugin-based system.
At the level of research projects, NOMAD allows for quick monitoring
of the data coverage via a fully customizable dashboard.

[1] Scheidgen, M. et al., JOSS 8, 5388 (2023).
[2] Scheffler, M. et al., Nature 604, 635-642 (2022).

MM 31.8 Thu 17:00 H10
NOMAD CAMELS: An Open-Source Solution for Creat-
ing FAIR Data from Experiments — ∙Alexander Fuchs1,2,
Johannes Lehmeyer1,2, Michael Krieger1,2, and Heiko
Weber1,2 — 1Lehrstuhl für Angewandte Physik, Friedrich-Alexander-
Universität Erlangen-Nürnberg — 2FAIRmat Consortium
NOMAD CAMELS is a configurable open-source measurement soft-
ware. It is suited to control experiments and records fully self-
describing experimental data. It has its origins in the field of ex-
perimental physics where a wide variety of measurement instruments
are used in frequently changing experimental setups and measure-
ment protocols. CAMELS provides a graphical user interface (GUI)
which allows the user to configure experiments without the need of
programming skills or deep understanding of instrument communica-
tion. CAMELS translates user-defined measurement protocols into
stand-alone executable Python code for full transparency of the ac-
tual measurement sequences. Metadata inflow from Electronic Lab
Notebooks (ELNs) and data output into such is well supported for a
seamless workflow. CAMELS is designed with a focus on full recording
of data and metadata aligned with the NeXus ontology. When shared
with others, data produced with CAMELS allow full understanding of
the measurement and the resulting data in accordance with the FAIR
principles.

MM 31.9 Thu 17:15 H10
Databases of Fermi surfaces and de Haas-van Alphen oscilla-
tion frequencies from first principles simulations — ∙Nataliya
Paulish1, Junfeng Qiao2, and Giovanni Pizzi1 — 1PSI Center for
Scientific Computing, Theory and Data, 5232 Villigen PSI, Switzer-
land — 2Theory and Simulation of Materials (THEOS), and National
Centre for Computational Design and Discovery of Novel Materials
(MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lau-
sanne, Switzerland
The Fermi surface (FS) of a metal separates occupied from unoccu-

pied electronic states. Knowing its shape is crucial to understanding
the electronic properties of the material. Accurate simulation of the
FS requires a very dense sampling of the Brillouin zone, and thus di-
rect density functional theory (DFT) calculations are limited by their
computational cost. To overcome this difficulty, we use interpolation
from a basis of spatially localized projectability disentangled Wannier
functions (PDWFs) - a recently developed algorithm for automated
Wannierization [1]. Using this algorithm, FSs were generated for over
7’000 inorganic metals. We also computed de Haas-van Alphen fre-
quencies associated with each FS, enabling direct comparison of our
simulations with experiments. The procedure is fully automated us-
ing the AiiDA workflow engine [2]. Our database will be published
openly online and browsable on the Materials Cloud MC3D section
(https://mc3d.materialscloud.org).

[1] J. Qiao, G. Pizzi, N. Marzari, npj Comput Mater 9, 208 (2023)
[2] S. P. Huber et al., Scientific data 7, 1 (2020)

MM 31.10 Thu 17:30 H10
A systematic benchmark of G0W0 calculations — ∙Marc
Thieme, Max Großmann, Malte Grunert, and Erich Runge —
Technische Universität Ilmenau, Ilmenau, Germany
Accurate and efficient ab initio electronic structure calculations of
semiconductors and insulators are a prerequisite for building large,
high-quality databases for machine learning (ML). However, the "op-
timal" choice (speed vs. accuracy) of the approximations used, i.e.
the exchange-correlation (XC) functional for density functional theory
(DFT) calculations or a particular many-body perturbation theory, re-
mains unclear. A systematic benchmark of band gaps of solids using
several different DFT XC functionals by Borlido et al [1,2] showed that
hybrid functionals perform exceptionally well and seem to be the func-
tionals of choice. The present study addresses the question of whether
G0W0 calculations provide a sufficient increase in accuracy to justify
their increased computational cost compared to simpler DFT calcula-
tions with hybrid functionals. We calculate the band gaps for about
300 materials using the G0W0 method starting from LDA/PBE DFT
calculations. The deviations between G0W0 and experimental band
gaps are systematically compared with those of the best hybrid func-
tionals

[1] Borlido et al., J. Chem. Theory Comput. 15, 9 (2019)
[2] Borlido et al., npj Comput. Mater. 6, 96 (2020)

MM 31.11 Thu 17:45 H10
Machine Learning-Assisted Design of Magnetic Materials:
Predicting Properties for not purely ternary Nd2Fe14B —
∙Manuel Enns, Daniel Urban, Wolfgang Körner, and Chris-
tian Elsässer — Fraunhofer IWM, Wöhlerstraße 11, 79108 Freiburg,
Germany
Nd2Fe14B-based hard-magnetic materials are widely used for strong
permanent magnets. Their re-use and recycling after the end of
the magnet’s life cycle opens the question of the degradation of the
magnetic properties due to the incorporation of unintentional impu-
rity elements originating from the recycling procedures. In this talk,
we present a data-mining and machine-learning (ML) approach us-
ing kernel-based learning methods to predict the influence of impurity
atoms in Nd2Fe14B-based materials. The magnetic-property data used
for training and testing the ML model were obtained by a combinato-
rial high-throughput screening (HTS) using density-functional theory
calculations. We demonstrate that our ML approach can accurately
predict the saturation magnetization, the uniaxial anisotropy constant,
and the formation energy for Nd2Fe14B with impurities added by re-
cycling.
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