DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

DS: Fachverband Dünne Schichten

DS 4: 2D semiconductors and van der Waals heterostructures I (joint session HL/DS/O)

DS 4.1: Talk

Monday, March 16, 2020, 09:30–09:45, POT 81

Demonstration of a broadband Photodetector Based on a Two-Dimensional Metal-Organic Framework — •Himani Arora1,2, Renhao Dong3, Tommaso Venanzi1,2, Jens Zscharschuch1, Harald Schneider1, Manfred Helm1,2, Xinliang Feng3, Enrique Cánovas4, and Artur Erbe11Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany — 2Faculty of Physics & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany — 3Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany — 4Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain

Electrically-conducting metal-organic frameworks (MOFs) have gained considerable attention in last years. In this regard, we report a novel semiconducting Fe3(THT)2(NH4)3 (THT, 2,3,6,7,10,11-triphenylenehexathiol) two-dimensional MOF. The developed MOF films reveal a free-charge band-like transport with a record-high Hall mobility of 230 cm2 V-1 s-1 at room temperature. We further demonstrate a proof-of-concept photodetector based on Fe3(THT)2(NH4)3 MOF films, operative in UV-to-NIR range. Due to IR bandgap of the MOF samples (0.45 eV), the photodetectors are best operated at cryogenic temperatures by suppressing the noise from thermally-activated charge carriers to obtain a clear signal from optically generated carries. Our work reports the first proof-of-concept MOF photodetector, revealing MOFs as promising candidates for optoelectronics.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden