DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2025 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

O: Fachverband Oberflächenphysik

O 12: Nanostructures at Surfaces I

O 12.7: Vortrag

Montag, 17. März 2025, 16:30–16:45, H6

Template-Assisted Synthesis of Fe3O4 Nanodots for High-Density Resistive Switching Memory — •Yifan Xu1,2, Connie Bednarski-Meinke2, Erkai Wang3, Asmaa Qdemat2, Emmanuel Kennzinger2, Felix Gunkel3, Regina Dittmann3, Yen-Po Liu3, Oleg Petracic2,1, and Mai Hussein Hamed2,41Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, 40225 Düsseldorf, Germany — 2Jülich Centre for Neutron Science (JCNS-2), JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany — 3Peter Grünberg Institute and JARA-FIT, Forschungszentrum Jülich GmbH, Jülich, Germany — 4Faculty of Science, Helwan University, 11795 Cairo, Egypt

The growing demand for high-density memory solutions has driven the exploration of innovative fabrication techniques. We introduce a bottom-up approach for synthesizing ordered Fe3O4 nanodots for nanoscale resistive switching memory applications. Using anodic aluminum oxide (AAO) templates as masks, Fe3O4 nanodots on Nb:SrTiO3 substrate were fabricated via pulsed laser deposition. Scanning electron microscopy (SEM) confirms the nanodots’ uniformity. Grazing incidence X-ray scattering (GISAXS) reveals a high degree of long-range ordering. Magnetometry measurements show that the Verwey transition temperature (TV) and coercivity are preserved compared to continuous thin films. Conductive atomic force microscopy (cAFM) confirms well-defined nanodots using current maps. By sweeping the voltage on a single nanodot, set and reset processes are observed within ±2V.

Keywords: Iron oxide; resistive switching; nanodot; cAFM; STO

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2025 > Regensburg